中考数学精选压轴题解题技巧题型分类解说

四季读书网 3 0

压轴题解题技巧题型分类解说

一、 对称翻折平移旋转

1.(南宁)如图12,把抛物线

(1)分别写出抛物线与

(2)设是抛物线上与

(3)在抛物线上是否存在点,使得,如果存在,求出点的坐标,如果不存在,请说明理由.

2.(福建宁德)如图,已知抛物线C1:的顶点为P,与x轴相交于AB两点(点A在点B的左边),点B的横坐标是1.

(1)求P点坐标及a的值;(4分)

(2)如图(1),抛物线C2与抛物线C1关于x轴对称,将抛物线C2向右平移,平移后的抛物线记为C3C3的顶点为M,当点PM关于点B成中心对称时,求C3的解析式;(4分)

(3)如图(2),点Qx轴正半轴上一点,将抛物线C1绕点Q旋转180°后得到抛物线C4.抛物线C4的顶点为N,与x轴相交于EF两点(点E在点F的左边),当以点PNF为顶点的三角形是直角三角形时,求点Q的坐标.(5分)

二、 动态:动点、动线

3.(辽宁锦州)如图,抛物线与x轴交于A(x1,0)、B(x2,0)两点,且x1x2,与y轴交于点C(0,4),其中x1x2是方程x2-2x-8=0的两个根.

(1)求这条抛物线的解析式;

(2)点P是线段AB上的动点,过点P

PEAC,交BC于点E,连接CP,当△CPE

的面积最大时,求点P的坐标;

(3)探究:若点Q是抛物线对称轴上的点,

是否存在这样的点Q,使△QBC成为等腰三

角形?若存在,请直接写出所有符合条件的

Q的坐标;若不存在,请说明理由.                                        

4.(山东青岛)已知:如图①,在Rt△ACB中,∠C=90°,AC=4cm,BC=3cm,点P由B出发沿BA方向向点A匀速运动,速度为1cm/s;点Q由A出发沿AC方向向点C匀速运动,速度为2cm/s;连接PQ.若设运动的时间为t(s)(0<t<2),解答下列问题:

(1)当t为何值时,PQ∥BC?

(2)设△AQP的面积为y(),求y与t之间的函数关系式;

(3)是否存在某一时刻t,使线段PQ恰好把Rt△ACB的周长和面积同时平分?若存在,求出此时t的值;若不存在,说明理由;

(4)如图②,连接PC,并把△PQC沿QC翻折,得到四边形PQP′C,那么是否存在某一时刻t,使四边形PQP′C为菱形?若存在,求出此时菱形的边长;若不存在,说明理由.

5.(吉林省)如图所示,菱形ABCD的边长为6厘米,∠B=60°.从初始时刻开始,点PQ同时从A点出发,点P以1厘米/秒的速度沿ACB的方向运动,点Q以2厘米/秒的速度沿ABCD的方向运动,当点Q运动到D点时,PQ两点同时停止运动.设PQ运动的时间为x秒时,△APQ与△ABC重叠部分的面积为y平方厘米(这里规定:点和线段是面积为0的三角形),解答下列问题:

(1)点PQ从出发到相遇所用时间是          秒;

(2)点PQ从开始运动到停止的过程中,当△APQ是等边三角形时x的值是          秒;

(3)求yx之间的函数关系式.

6.(浙江嘉兴)如图,已知AB是线段MN上的两点,中考数学精选压轴题解题技巧题型分类解说 第1张中考数学精选压轴题解题技巧题型分类解说 第2张中考数学精选压轴题解题技巧题型分类解说 第3张.以A为中心顺时针旋转点M,以B为中心逆时针旋转点N,使MN两点重合成一点C,构成△ABC,设中考数学精选压轴题解题技巧题型分类解说 第4张

(1)求x的取值范围;

(2)若△ABC为直角三角形,求x的值;

(3)探究:△ABC的最大面积?

三、 圆

7.(青海) 如图10,已知点A(3,0),以A为圆心作⊙A与Y轴切于原点,与x轴的另一个交点为B,过B作⊙A的切线l.

(1)以直线l为对称轴的抛物线过点A及点C(0,9),求此抛物线的解析式;

(2)抛物线与x轴的另一个交点为D,过D作⊙A的切线DE,E为切点,求此切线长;

(3)点F是切线DE上的一个动点,当△BFD与EAD△相似时,求出BF的长 .

中考数学精选压轴题解题技巧题型分类解说 第5张

8.(天水)如图1,在平面直角坐标系xOy,二次函数yax2bxc(a>0)的图象顶点为D,与y轴交于点C,与x轴交于点AB,点A在原点的左侧,点B的坐标为(3,0),OBOC,tan∠ACO=.

(1)求这个二次函数的解析式;

(2)若平行于x轴的直线与该抛物线交于点MN,且以MN为直径的圆与x轴相切,求该圆的半径长度;

(3)如图2,若点G(2,y)是该抛物线上一点,点P是直线AG下方的抛物线上的一动点,当点P运动到什么位置时,△AGP的面积最大?求此时点P的坐标和△AGP的最大面积.

9.(湖南张家界)在平面直角坐标系中,已知A(-4,0),B(1,0),且以AB为直径的圆交y轴的正半轴于点C,过点C作圆的切线交x轴于点D

(1)求点C的坐标和过ABC三点的抛物线的解析式;

(2)求点D的坐标;

(3)设平行于x轴的直线交抛物线于EF两点,问:是否存在以线段EF为直径的圆,恰好与x轴相切?若存在,求出该圆的半径,若不存在,请说明理由.

10.(潍坊市)如图,在平面直角坐标系中,半径为1的圆的圆心在坐标原点,且与两坐标轴分别交于四点.抛物线与轴交于点,与直线交于点,且分别与圆相切于点和点.

(1)求抛物线的解析式;

(2)抛物线的对称轴交轴于点,连结,并延长交圆于,求的长.

(3)过点作圆的切线交的延长线于点,判断点是否在抛物线上,说明理由.

四、比例比值取值范围

11.(怀化)图9是二次函数的图象,其顶点坐标为M(1,-4).

(1)求出图象与轴的交点A,B的坐标;

(2)在二次函数的图象上是否存在点P,使,若存在,求出P点的坐标;若不存在,请说明理由;

(3)将二次函数的图象在轴下方的部分沿轴翻折,图象的其余部分保持不变,得到一个新的图象,请你结合这个新的图象回答:当直线与此图象有两个公共点时,的取值范围.

12. (湖南长沙)如图,在平面直角坐标系中,矩形OABC的两边分别在x轴和y轴上, cm, OC=8cm,现有两动点PQ分别从OC同时出发,P在线段OA上沿OA方向以每秒cm的速度匀速运动,Q在线段CO上沿CO方向以每秒1 cm的速度匀速运动.设运动时间为t秒.

(1)用t的式子表示△OPQ的面积S

(2)求证:四边形OPBQ的面积是一个定值,并求出这个定值;

中考数学精选压轴题解题技巧题型分类解说 第6张(3)当△OPQ与△PAB和△QPB相似时,抛物线经过B、P两点,过线段BP上一动点M作轴的平行线交抛物线于N,当线段MN的长取最大值时,求直线MN把四边形OPBQ分成两部分的面积之比.

13.(成都)在平面直角坐标系中,抛物线与轴交于两点(点在点的左侧),与轴交于点,点的坐标为,若将经过两点的直线沿轴向下平移3个单位后恰好经过原点,且抛物线的对称轴是直线.

(1)求直线及抛物线的函数表达式;

(2)如果P是线段上一点,设、的面积分别为、,且,求点P的坐标;

(3)设的半径为l,圆心在抛物线上运动,则在运动过程中是否存在与坐标轴相切的情况?若存在,求出圆心的坐标;若不存在,请说明理由.并探究:若设⊙Q的半径为,圆心在抛物线上运动,则当取何值时,⊙Q与两坐轴同时相切?

五、探究型

14.(内江)如图,抛物线与轴交于两点,与轴交于点.

(1)请求出抛物线顶点的坐标(用含的代数式表示),两点的坐标;

(2)经探究可知,与的面积比不变,试求出这个比值;

(3)是否存在使为直角三角形的抛物线?若存在,请求出;如果不存在,请说明

理由.

中考数学精选压轴题解题技巧题型分类解说 第7张

15.(重庆潼南)如图, 已知抛物线与y轴相交于C,与x轴相交于A、B,点A的坐标为(2,0),点C的坐标为(0,-1).

(1)求抛物线的解析式;

(2)点E是线段AC上一动点,过点E作DE⊥x轴于点D,连结DC,当△DCE的面积最大时,求点D的坐标;

(3)在直线BC上是否存在一点P,使△ACP为等腰三角形,若存在,求点P的坐标,若不存在,说明理由.

16.(福建龙岩)如图,抛物线经过的三个顶点,已知轴,点在轴上,点在轴上,且.

(1)求抛物线的对称轴;

(2)写出三点的坐标并求抛物线的解析式;

(3)探究:若点是抛物线对称轴上且在轴下方的动点,是否存在是等腰三角形.若存在,求出所有符合条件的点坐标;不存在,请说明理由.

中考数学精选压轴题解题技巧题型分类解说 第8张

17.(广西钦州)如图,已知抛物线y中考数学精选压轴题解题技巧题型分类解说 第9张x2bxc与坐标轴交于ABC三点, A点的坐标为(-1,0),过点C的直线y中考数学精选压轴题解题技巧题型分类解说 第10张x-3与x轴交于点Q,点P是线段BC上的一个动点,过PPHOB于点H.若PB=5t,且0<t<1.

(1)填空:点C的坐标是_▲_b_▲_c_▲_

(2)求线段QH的长(用含t的式子表示);

(3)依点P的变化,是否存在t的值,使以PHQ为顶点的三角形与△COQ相似?若存在,求出所有t的值;若不存在,说明理由.

18.(重庆市)已知:如图,在平面直角坐标系xOy中,矩形OABC的边OA在轴的正半轴上,OC在轴的正半轴上,OA=2,OC=3.过原点O作∠AOC的平分线交AB于点D,连接DC,过点DDEDC,交OA于点E

(1)求过点EDC的抛物线的解析式;

(2)将∠EDC绕点D按顺时针方向旋转后,角的一边与轴的正半轴交于点F,另一边与线段OC交于点G.如果DF与(1)中的抛物线交于另一点M,点M的横坐标为,那么EF=2GO是否成立?若成立,请给予证明;若不成立,请说明理由;

(3)对于(2)中的点G,在位于第一象限内的该抛物线上是否存在点Q,使得直线GQAB的交点P与点CG构成的△PCG是等腰三角形?若存在,请求出点Q的坐标;若不存在,请说明理由.

19.(湖南长沙)如图,抛物线yax 2bxc(a0)x轴交于A(-3,0)B两点,与y轴相交于点C(0).当x=-4x=2时,二次函数yax 2bxc(a0)的函数值y相等,连结ACBC

(1)求实数abc的值;

(2)若点MN同时从B点出发,均以每秒1个单位长度的速度分别沿BABC边运动,其中一个点到达终点时,另一点也随之停止运动.当运动时间为t秒时,连结MN,将△BMN沿MN翻折,B点恰好落在AC边上的P处,求t的值及点P的坐标;

(3)在(2)的条件下,抛物线的对称轴上是否存在点Q,使得以BNQ为顶点的三角形与△ABC相似?若存在,请求出点Q的坐标;若不存在,请说明理由.

20.(江苏徐州)如图1,一副直角三角板满足AB=BC,AC=DE,∠ABC=∠DEF=90°,∠EDF=30°

【操作】将三角板DEF的直角顶点E放置于三角板ABC的斜边AC上,再将三角板DEF绕点E旋转,并使边DE与边AB交于点P,边EF与边BC于点Q

【探究一】在旋转过程中,

(1) 如图2,当时,EP与EQ满足怎样的数量关系?并给出证明.

(2) 如图3,当时EP与EQ满足怎样的数量关系?,并说明理由.

(3) 根据你对(1)、(2)的探究结果,试写出当时,EP与EQ满足的数量关系式

        ,其中的取值范围是       (直接写出结论,不必证明)

【探究二】若,AC=30cm,连续PQ,设△EPQ的面积为S(cm2),在旋转过程中:

(1) S是否存在最大值或最小值?若存在,求出最大值或最小值,若不存在,说明理由.

(2) 随着S取不同的值,对应△EPQ的个数有哪些变化?不出相应S值的取值范围.

中考数学精选压轴题解题技巧题型分类解说 第11张中考数学精选压轴题解题技巧题型分类解说 第12张

中考数学精选压轴题解题技巧题型分类解说 第13张

                               

中考数学精选压轴题解题技巧题型分类解说 第14张六、最值类

22.(恩施) 如图11,在平面直角坐标系中,二次函数的图象与x轴交于A、B两点, A点在原点的左侧,B点的坐标为(3,0),与y轴交于C(0,-3)点,点P是直线BC下方的抛物线上一动点.

(1)求这个二次函数的表达式.

(2)连结POPC,并把△POC沿CO翻折,得到四边形POPC,那么是否存在点P,使四边形POPC为菱形?若存在,请求出此时点P的坐标;若不存在

请说明理由.

(3)当点P运动到什么位置时,四边形 ABPC的面积最大并求出此时P点的坐标和四边形ABPC的最大面积.

▍ 声明:本文整理自网络,如有侵权,请联系删除。

本公号刊载此文,是出于传递更多信息之目的。若有来源标注错误或侵犯了您的合法权益,请随时与我们联系协商,联系(QQ):1146980684,我们将及时更正、删除。

抱歉,评论功能暂时关闭!