两角和高中数学的公式是什么

四季读书网 9 0

两角和高中数学的公式是什么

学习数学需要结合课本的知识点和例题来做。如果在思考后不会,可以去问老师,老师会慢慢引导学生思考的。以下是小编整理的两角和高中数学的公式,希望可以提供给大家进行参考和借鉴。

两角和高中数学的公式是什么 第1张

两角和高中数学的公式

1、sin(a+b)=sinacosb+cosasinbsin(a-b)=sinacosb-sinbcosa

2、cos(a+b)=cosacosb-sinasinbcos(a-b)=cosacosb+sinasinb

3、tan(a+b)=(tana+tanb)/(1-tanatanb)tan(a-b)=(tana-tanb)/(1+tanatanb)

4、ctg(a+b)=(ctgactgb-1)/(ctgb+ctga)ctg(a-b)=(ctgactgb+1)/(ctgb-ctga)

高三数学复习实用的方法技巧

一、紧跟老师的节奏

基本上学校老师都已经安排好了学生的复习进程,包括第一轮总复习、第二轮总复习、冲刺复习等。每一个复习阶段都有其作用,比如第一轮复习注重基础,而最后冲刺阶段会进行一些押题。在复习时学生应该紧跟老师的节奏千万不能开小差,如果在基础复习时没有认真巩固之前的基础知识,那么之后复习需要用到这些知识的时候学生大脑一片空白,那复习也就失去了意义。

二、不要只顾难题

数学复习时进行习题练习,许多学生都会犯一个错误,那就是过于重视难题的练习而忽略基础题。要知道,在整个卷面分值来说基础题分值会占到70%,只顾复习难题而忽略基础题复习反而得不偿失。数学复习做习题练习时时应该将基础题型熟练掌握,先拿到这些基础分再考虑难题练习提高得分上限。

三、及时查漏补缺,弥补弱势项

数学试卷涉及的高中数学知识十分全面,但是学生不一定能够全面掌握这些数学知识,有不少学生都存在自己的弱势项,例如对函数拿手却对几何一窍不通。

不少同学在数学复习时遇到自己不会的题型会选择直接跳过,去练习那些自己擅长的题型,这样一位的逃避只会让自己的缺陷一直存在,对于存在弱势项的同学应该及时查漏补缺,不要存在侥幸心理,如果考试时刚好考到自己不会的那部分知识吃亏的只能是自己。

提高数学成绩有哪些技巧

一、课内重视听讲,课后及时复习

接受一种新的知识,主要实在课堂上进行的,所以要重视课堂上的学习效率,找到适合自己的学习方法,上课时要跟住老师的思路,积极思考。下课之后要及时复习,遇到不懂的地方要及时去问,在做作业的时候,先把老师课堂上讲解的内容回想一遍,还要牢牢的掌握公式及推理过程,尽量不要去翻书。尽量自己思考,不要急于翻看答案。还要经常性的总结和复习,把知识点结合起来,变成自己的知识体系。

二、多做题,养成良好的解题习惯

要想学好数学,大量做题是必可避免的,熟练地掌握各种题型,这样才能有效的提高数学成绩。刚开始做题的时候先以书上习题为主,答好基础,然后逐渐增加难度,开拓思路,练习各种类型的解题思路,对于容易出现错误的题型,应该记录下来,反复加以联系。在做题的时候应该养成良好的解题习惯,集中注意力,这样才能进入最佳的状态,形成习惯,这样在考试的时候才能运用自如。

三、调整心态,正确对待考试

考试的时候,大部分的题都是基础题,只有少数几道题时比较难的题,所以我们要调整好心态,鼓励自己,在做题的时候认真思考,不要浮躁,在考试之前做好准备,做一做常规的题型,不要为了赶时间而增加做题速度,要有条不紊的进行。

高中数学答题方法是什么

一、数形结合法

高中数学题目对我们的逻辑思维、空间思维以及转换思维都有着较高要求,其具有较强的推证性和融合性,所以我们在解决高中数学题目时,必须严谨推导各种数量关系。很多高中题目都并不是单纯的数量关系题,其还涉及到空间概念和其他概念,所以我们可以利用数形结合法理清题目中的各种数量关系,从而有效解决各种数学问题。

数形结合法主要是指将题目中的数量关系转化为图形,或者将图形转化为数量关系,从而将抽象的结构和形式转化为具体简单的数量关系,帮助我们更好解决数学问题。例如,题目为“有一圆,圆心为O,其半径为1,圆中有一定点为A,有一动点为P,AP之间夹角为x,过P点做OA垂线,M为其垂足。假设M到OP之间的距离为函数f(x),求y=f(x)在[0,?仔]的图像形状。”

这个题目涉及到了空间概念以及函数关系,所以我们在解决这个题目时不能只从一个方面来思考问题,也不能只对题目中的函数关系进行深入挖掘。从已知条件可知题目要求我们解决几何图形中的函数问题,所以我们可以利用数形结合思想来解决这个问题。首先我们可以根据已知条件绘出相应图形,如图1,显示的是依据题目中的关系绘制的图形。

根据题目已知条件可知圆的半径为1,所以OP=1,∠POM=x,OM=|cos|,然后我们可以建立关于f(x)的函数方程,可得所以我们可以计算出其周期为,其中最小值为0,最大值为,根据这些数量关系,我们可以绘制出y=f(x)在[0,?仔]的图像形状,如图2,显示的是y=f(x)在[0,?仔]的图像。

二、排除解题法

排除解题法一般用于解决数学选择题,当我们应用排除法解决问题时,需掌握各种数学概念及公式,对题目中的答案进行论证,对不符合论证关系的答案进行排除,从而有效解决数学问题。当我们在解决选择题时,必须将题目及答案都认真看完,对其之间的联系进行合理分析,并通过严谨的解题思路将不符合论证关系的条件进行排除,从而选择正确的答案。

排除解题法主要用于缩小答案范围,从而简化我们的解题步骤,提高接替效率,这样方法具有较高的准确率。例如,题目为“z的共轭复数为z,复数z=1+i,求zz-z-1的值。选项A为-2i、选项B为i、选项C为-i、选项D为2i。”

当我们在解决这个题目时,不仅要对题目已知条件进行合理分析,而且还要对选项进行合理考虑,并根据它们之间的联系进行有效论证。我们可以采取排除法来解决这个问题,已知z=1+i,所以我们可以求出z的共轭复数,由于题目中含有负号,所以我们可以排除B项和D项;然后我们可以将z的共轭复数带进表达式,可得zz-z-1=(1+i)(1-i)-1-i-1=-i,所以我们可以将A项排除,最终选择C项。


抱歉,评论功能暂时关闭!