中考代数式总复习专题(第一课)

四季读书网 4 0
中考代数式总复习专题(第一课)

一、解一元一次方程

概念:只含有一个未知数,且未知数的最高次数是1的整式方程。

原理:利用等式性质进行移项、合并同类项、系数化为1等步骤求解。

例题:解方程 3x - 5 = 7

解:3x = 7 + 5 → 3x = 12 → x = 4

配套练习:

2x + 3 = 11

5x - 8 = 2x + 7

3(x - 2) = 2x + 1

(x + 1)/2 = (2x - 3)/3

0.5x - 0.3 = 0.2x + 0.7

 

二、解二元一次方程组

概念:含有两个未知数,且未知数的项的次数都是1的方程组。

原理:常用代入消元法或加减消元法,将二元化为一元求解。

例题:解方程组 {2x + y = 7, x - y = 2}

解:用加减法,两式相加得 3x = 9,x = 3,代入得 y = 1

配套练习:

{x + y = 5, 2x - y = 4}

{3x + 2y = 8, x - y = 1}

{2x + 3y = 7, 3x - 2y = 4}

{x/2 + y/3 = 1, x - y = 1}

{0.2x + 0.3y = 1.3, 0.4x - 0.1y = 1.1}

 

三、解一元一次不等式

概念:用不等号连接,含有一个未知数,且未知数的次数是1的不等式。

原理:解法类似方程,但注意不等号方向在乘除负数时要改变。

例题:解不等式 2x - 3 > 5

解:2x > 8 → x > 4

配套练习:

3x + 2 < 11

2x - 5 ≥ x + 1

3(x - 1) ≤ 2x + 4

(x + 3)/2 > (2x - 1)/3

2 - 3x < 5x + 6

 

四、解分式方程

概念:分母中含有未知数的方程。

原理:去分母化为整式方程求解,最后必须检验分母不为零。

例题:解方程 1/(x - 2) = 2

解:去分母得 1 = 2(x - 2),解得 x = 2.5,经检验是原方程的解

配套练习:

1/x = 2

3/(x + 1) = 1

(x + 2)/(x - 1) = 2

1/(x - 3) + 1/(x + 3) = 2/(x² - 9)

(2x - 1)/(x + 2) = 3

 

五、解一元二次方程

概念:只含有一个未知数,且未知数的最高次数是2的整式方程。

原理:常用方法有直接开平方法、配方法、公式法、因式分解法。

例题:解方程 x² - 5x + 6 = 0

解:因式分解得 (x - 2)(x - 3) = 0,x₁ = 2,x₂ = 3

配套练习:

x² - 4 = 0

x² + 6x + 5 = 0

2x² - 5x - 3 = 0

x² - 4x + 1 = 0

3x² + 2x - 1 = 0

 

六、分式的化简求值

概念:将分式通过约分、通分等运算化为最简形式,再代入数值计算。

原理:先化简再求值,注意分母不为零的条件。

例题:先化简,再求值:(x² - 4)/(x² + 4x + 4),其中 x = 1

解:原式 = (x - 2)(x + 2)/(x + 2)² = (x - 2)/(x + 2),当 x = 1 时,原式 = -1/3

配套练习:

(x² - 9)/(x² + 6x + 9),x = 2

(x² - 4x + 4)/(x² - 4),x = 3

(x² - 1)/(x² + 2x + 1) - x/(x + 1),x = 2

(1/x - 1/(x + 1)) ÷ 1/(x² + x),x = 2

(a² - b²)/(a² + 2ab + b²) ÷ (a - b)/(a + b),a = 3,b = 1

 

七、整式的化简求值

概念:将整式通过合并同类项、去括号等运算化为最简形式,再代入数值计算。

原理:先化简再求值,注意运算顺序。

例题:先化简,再求值:2(3a - b) - 3(a + 2b),其中 a = 1,b = -2

解:原式 = 6a - 2b - 3a - 6b = 3a - 8b,当 a = 1,b = -2 时,原式 = 3 + 16 = 19

配套练习:

3x - 2(x - y) + 4y,其中x = 2,y = 1

2(a² - b) - 3(a² + 2b),其中a = -1,b = 2

(2m + n)² - (m - n)²,其中m = 1,n = 2

(x + 2)(x - 2) - (x - 3)²,其中x = 4

(a + b)(a - b) + (a + b)² - 2a²,其中a = 3,b = 1

参考答案如下:

一、解一元一次方程

核心思路:移项、合并同类项、系数化为1

2x + 3 = 11

解:2x = 11 - 3 = 8 → x = 4

5x - 8 = 2x + 7

解:5x - 2x = 7 + 8 → 3x = 15 → x = 5

3(x - 2) = 2x + 1

解:3x - 6 = 2x + 1 → 3x - 2x = 1 + 6 → x = 7

(x + 1)/2 = (2x - 3)/3

解:3(x + 1) = 2(2x - 3) → 3x + 3 = 4x - 6 → x = 9

答案:x = 9

0.5x - 0.3 = 0.2x + 0.7

解:0.5x - 0.2x = 0.7 + 0.3 → 0.3x = 1 → x = 10/3

二、解二元一次方程组

核心思路:代入消元法或加减消元法

{x + y = 5, 2x - y = 4}

解:两式相加:3x = 9 → x = 3,代入得 y = 2

答案:{x = 3, y = 2}

{3x + 2y = 8, x - y = 1}

解:由②得 x = y + 1,代入①:3(y + 1) + 2y = 8 → y = 1,x = 2

答案:{x = 2, y = 1}

{2x + 3y = 7, 3x - 2y = 4}

解:①×2 + ②×3:4x + 6y + 9x - 6y = 14 + 12 → 13x = 26 → x = 2,y = 1

答案:{x = 2, y = 1}

{x/2 + y/3 = 1, x - y = 1}

解:①×6得 3x + 2y = 6,与②联立解得 x = 8/5,y = 3/5

答案:{x = 8/5, y = 3/5}

{0.2x + 0.3y = 1.3, 0.4x - 0.1y = 1.1}

解:②×3 + ①:0.2x + 0.3y + 1.2x - 0.3y = 1.3 + 3.3 → 1.4x = 4.6 → x = 23/7,y = 11/7

答案:{x = 23/7, y = 11/7}

三、解一元一次不等式

⚠️注意:乘除负数时,不等号方向要改变!

3x + 2 < 11

解:3x < 9 → x < 3

2x - 5 ≥ x + 1

解:2x - x ≥ 1 + 5 → x ≥ 6

3(x - 1) ≤ 2x + 4

解:3x - 3 ≤ 2x + 4 → x ≤ 7

答案:x ≤ 7

(x + 3)/2 > (2x - 1)/3

解:3(x + 3) > 2(2x - 1) → 3x + 9 > 4x - 2 → x < 11

答案:x < 11

2 - 3x < 5x + 6

解:-3x - 5x < 6 - 2 → -8x < 4 → x > -1/2(注意变号!)

四、解分式方程

🔍关键步骤:去分母后必须检验!

1/x = 2

解:1 = 2x → x = 0.5,经检验成立

答案:x = 0.5

3/(x + 1) = 1

解:3 = x + 1 → x = 2,经检验成立

答案:x = 2

(x + 2)/(x - 1) = 2

解:x + 2 = 2(x - 1) → x = 4,经检验成立

答案:x = 4

1/(x - 3) + 1/(x + 3) = 2/(x² - 9)

解:通分后得 2x/(x² - 9) = 2/(x² - 9) → 2x = 2 → x = 1,经检验成立

答案:x = 1

(2x - 1)/(x + 2) = 3

解:2x - 1 = 3(x + 2) → x = -7,经检验成立

答案:x = -7

五、解一元二次方程

四大解法:直接开方、因式分解、配方法、公式法

x² - 4 = 0

解:直接开方 → x = ±2

x² + 6x + 5 = 0

解:因式分解:(x + 1)(x + 5) = 0 → x = -1 或 -5

2x² - 5x - 3 = 0

解:因式分解:(2x + 1)(x - 3) = 0 → x = -1/2 或 3

x² - 4x + 1 = 0

解:公式法:x = 2 ± √3

答案:x = 2 ± √3

3x² + 2x - 1 = 0

解:公式法:x = (-2 ± 4)/6 → x = 1/3 或 -1

六、分式的化简求值

口诀:先化简,再代入,分母不能为零!

(x² - 9)/(x² + 6x + 9),x = 2

化简:(x - 3)/(x + 3),代入得 -1/5

(x² - 4x + 4)/(x² - 4),x = 3

化简:(x - 2)/(x + 2),代入得 1/5

(x² - 1)/(x² + 2x + 1) - x/(x + 1),x = 2

化简:-1/(x + 1),代入得 -1/3

[1/x - 1/(x + 1)] ÷ 1/(x² + x),x = 2

化简:1(与x无关),代入得 1

(a² - b²)/(a² + 2ab + b²) ÷ (a - b)/(a + b),a = 3,b = 1

化简:1(与a,b无关),代入得 1

七、整式的化简求值

核心技巧:合并同类项,去括号要变号

3x - 2(x - y) + 4y,x = 2,y = 1

化简:x + 6y,代入得 8

2(a² - b) - 3(a² + 2b),a = -1,b = 2

化简:-a² - 8b,代入得 -17

(2m + n)² - (m - n)²,m = 1,n = 2

化简:3m² + 6mn,代入得 15

(x + 2)(x - 2) - (x - 3)²,x = 4

化简:6x - 13,代入得 11

(a + b)(a - b) + (a + b)² - 2a²,a = 3,b = 1

化简:2ab,代入得 6

📌 复习建议

基础为王:熟练掌握各类方程的解法步骤

易错点:分式方程检验、不等式变号、去括号符号

举一反三:每个例题对应一类题型,要融会贯通

抱歉,评论功能暂时关闭!